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Smith Chart

The Smith chart is one of the most useful graphical tools  for high
frequency circuit applications.  The chart provides a clever way to
visualize complex functions and it continues to endure popularity
decades after its original conception.

From a mathematical point of view, the Smith chart is simply a
representation of all possible complex impedances with respect to
coordinates defined by the reflection coefficient.

The domain of definition of the
reflection coefficient is a circle of
radius 1 in the complex plane.  This
is also the domain of the Smith chart.

Im(Γ )

Re(Γ )

1
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The goal of the Smith chart is to identify all  possible impedances  on
the domain of existence of the reflection coefficient.  To do so, we
start from the general definition of line impedance  (which is equally
applicable to the load impedance)

( )
( )

( )
( )0

1
( )

1
V d d

Z d Z
I d d

+ Γ
= =

− Γ

This provides the complex function ( ) ( ){ }( ) Re , ImZ d f= Γ Γ  that
we want to graph.  It is obvious that the result would be applicable
only to lines with exactly characteristic impedance Z0.

In order to obtain universal curves, we introduce the concept of
normalized impedance

( ) ( )
( )0

1
( )

1
Z d d

z d
Z d

+ Γ
= =

− Γ
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The normalized impedance  is represented on the Smith chart  by
using families of curves that identify the normalized resistance  r
(real part) and the normalized reactance  x (imaginary part)

( ) ( ) ( )Re Imz d z j z r jx= + = +

Let’s represent the reflection coefficient  in terms of its coordinates

( ) ( ) ( )Re Imd jΓ = Γ + Γ

Now we can write

( ) ( )
( ) ( )
( ) ( ) ( )

( )( ) ( )

2 2
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1 Re Im
1 Re Im

1 Re Im 2Im

1 Re Im

j
r jx
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j

+ Γ + Γ
+ =

− Γ − Γ

− Γ − Γ + Γ
=

− Γ + Γ
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The real part  gives
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r r
r r

r r
r r

r rr

r

r r

− Γ − Γ
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− Γ + Γ

Γ − + Γ − + Γ + Γ + − =
+ +

Γ − + Γ − + + + Γ =
+ +

+ Γ − Γ + + + Γ =
+ ++

⇒ Γ − + Γ =
+ +

 
  

 
 
 

 
  

= 0

Add a quantity equal to zero

Equation of a circle
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The imaginary part  gives

( )
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⇒ Γ − + Γ − =

  

  

 
  

 
  

= 0

Multiply by x and add a
quantit y equal to zero

Equation of a circle
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The result for the real part indicates that on the complex plane with
coordinates (Re( Γ), Im(Γ)) all the possible impedances with a given
normalized resistance r  are found on a circle  with

{ } 1
, 0

1 1
r

r r+ +
Center = Radius =  

As the normalized resistance r varies from 0 to ∞ , we obtain a
family of circles completely contained inside the domain of the

reflection coefficient | Γ | ≤ 1 .
Im(Γ )

Re(Γ )

r = 0

r →∞

r = 1

r = 0.5

r = 5
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The result for the imaginary part indicates that on the complex
plane with coordinates (Re( Γ), Im(Γ)) all the possible impedances
with a given normalized reactance x  are found on a circle  with

{ }1 1
1 ,

x x
Center = Radius =  

As the normalized reactance x varies from -∞ to ∞ , we obtain a
family of arcs contained inside the domain of the reflection

coefficient | Γ | ≤ 1 .
Im(Γ )

Re(Γ )

x = 0

x →±∞

x = 1

x = 0.5

x = -1
x = - 0.5
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Basic Smith Chart techniques for loss-less transmission lines

� Given Z(d)   ⇒   Find  Γ(d)
Given Γ(d)   ⇒   Find  Z(d)

� Given ΓR and ZR        ⇒   Find  Γ(d) and Z(d)
Given Γ(d) and Z(d)  ⇒   Find  ΓR and ZR

� Find dmax and dmin (maximum and minimum locations for the
voltage standing wave pattern)

� Find the Voltage Standing Wave Ratio (VSWR)

� Given Z(d)   ⇒   Find Y(d)
Given Y(d)   ⇒   Find Z(d)
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Given Z(d)   ⇒   Find  Γ(d)

1. Normalize the impedance

( ) ( )
0 0 0

d
d

Z R X
z j r j x

Z Z Z
= = + = +

2. Find the circle of constant normalized resistance r
3. Find the arc of constant normalized reactance x
4. The intersection of the two curves indicates the reflection

coefficient in the complex plane.  The chart provides
directly the magnitude and the phase angle of Γ(d)

Example : Find  Γ(d), given

( ) 0d 25 100       with    50Z j Z= + Ω = Ω
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1. Normalization

  z (d) = (25 + j 100)/50

          = 0.5 + j 2.0

2. Find normalized
    resistance circle

r = 0.5

3. Find normalized
    reactance arc

x = 2.0

4. This vector represents
    the reflection coefficient

Γ (d) = 0.52 + j0.64

|Γ (d)| = 0.8246

       ∠∠ Γ (d) = 0.8885 rad
         = 50.906 °

 50.906 °

1.

0.8246
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Given Γ(d)   ⇒   Find  Z(d)

1. Determine the complex point representing the given
reflection coefficient Γ(d) on the chart.

2. Read the values of the normalized resistance r and of the
normalized reactance x that correspond to the reflection
coefficient point.

3. The normalized impedance is

( )dz r j x= +

and the actual impedance is

( ) ( )0 0 0 0(d) dZ Z z Z r j x Z r j Z x= = + = +
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Given ΓR and ZR    ⇐⇒   Find  Γ(d) and Z(d)

NOTE:  the magnitude  of the reflection coefficient  is constant  along
a loss-less transmission line terminated by a specified load, since

( ) ( )d exp 2 dR RjΓ = Γ − β = Γ

Therefore, on the complex plane, a circle  with center at the origin

and radius | ΓR | represents all possible reflection coefficients
found along the transmission line.  When the circle  of constant
magnitude of the  reflection coefficient is drawn on the Smith chart,
one can determine the values of the line impedance  at any location .

The graphical step-by-step procedure is:

1. Identify the load reflection coefficient ΓR and the
normalized load impedance ZR on the Smith chart.
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2. Draw the circle of constant reflection coefficient
amplitude  |Γ(d)| =|ΓR|.

3. Starting from the point representing the load, travel on
the circle in the clockwise direction, by an angle

2
2 d 2 d

πθ = β =
λ

4. The new location on the chart corresponds to location d
on the transmission line.  Here, the values of Γ(d) and
Z(d) can be read from the chart as before.

Example :  Given

        025 100           50RZ j Z= + Ω = Ωwith

      find

         ( ) ( ) 0.18Z d d dΓ = λand for       
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θ
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ΓR

zR

∠ ΓR

θθ = 2 β d
   = 2 (2π/λ) 0.18 λ
   = 2.262 rad
   = 129.6°

z(d)

Γ (d)Γ(d) = 0.8246 ∠-78.7°
        = 0.161 – j 0.809 z(d) = 0.236 – j1.192

Z(d) = z(d) × Z0 = 11.79 – j59.6 Ω

Circle with constant | Γ |
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Given ΓR and ZR     ⇒   Find dmax and dmin

1. Identify on the Smith chart the load reflection coefficient
ΓR or the normalized load impedance ZR .

2. Draw the circle of constant reflection coefficient
amplitude  |Γ(d)| =|ΓR|.  The circle intersects the real axis
of the reflection coefficient at two points which identify
dmax (when Γ(d) = Real positive) and dmin (when Γ(d) =
Real negative)

3. A commercial Smith chart provides an outer graduation
where the distances normalized to the wavelength can be
read directly.  The angles, between the vector ΓR and the
real axis, also provide a way to compute dmax and dmin .

Example : Find dmax and  dmin for

025 100   ;  25 100     ( 50 )R RZ j Z j Z= + Ω = − Ω = Ω
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ΓR

ZR

∠ ΓR

2β dmin = 230.9°
dmin = 0.3207λ

2β dmax = 50.9°
dmax = 0.0707λ

Im(Z R) > 0

Z j ZR � � �25 100 500� �    ( )
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ΓR

ZR

∠ ΓR

2β dmin = 129.1°
dmin = 0.1793 λ

2β dmax = 309.1°
dmax = 0.4293 λ

Im(Z R) < 0

Z j ZR � � �25 100 500� �    ( )



Transmission Lines

© Amanogawa, 2000 - Digital Maestro Series 154

Given ΓR and ZR  ⇒  Find the Voltage Standing Wave Ratio (VSWR)

The Voltage standing Wave Ratio or VSWR is defined as

max

min

1
1

R

R

V
VSWR

V

+ Γ
= =

− Γ

The normalized impedance  at a maximum location  of the standing
wave pattern is given by

( ) ( )
( )

max
max

max

1 1
!!!

1 1
R

R

d
z d VSWR

d

+ Γ + Γ
= = =

− Γ − Γ

This quantity is always real  and ≥ 1.  The VSWR is simply obtained
on the Smith chart, by reading the value of the (real) normalized
impedance, at the location dmax where Γ is real  and positive .
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The graphical step-by-step procedure is:

1. Identify the load reflection coefficient ΓR and the
normalized load impedance ZR on the Smith chart.

2. Draw the circle of constant reflection coefficient
amplitude  |Γ(d)| =|ΓR|.

3. Find the intersection of this circle with the real positive
axis for the reflection coefficient (corresponding to the
transmission line location dmax).

4. A circle of constant normalized resistance will also
intersect this point.  Read or interpolate the value of the
normalized resistance to determine the VSWR.

Example : Find the VSWR  for

1 2 025 100   ;  25 100     ( 50 )R RZ j Z j Z= + Ω = − Ω = Ω
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ΓR1

zR1

zR2

ΓR2

Circle with constant | Γ |

z(dmax )=10.4

For both loads
VSWR = 10.4

Circle of constant
conductance r = 10.4
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Given Z(d)  ⇐⇒   Find Y(d)

Note: The normalized impedance and admittance are defined as

( )
( )

( )
( )

1 1
( ) ( )

1 1
d d

z d y d
d d

+ Γ − Γ
= =

− Γ + Γ

Since

( )

( )
( ) ( )

4

1
14

4 11
4

d d

d
d

z d y d
dd

λ Γ + = −Γ  
λ + Γ +  − Γλ   ⇒ + = = =  λ + Γ   − Γ +  
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Keep in mind that the equality

( )
4

z d y d
λ + =  

is only valid for normalized impedance and admittance. The actual
values are given by

0

0
0

4 4

( )
( ) ( )

Z d Z z d

y d
Y d Y y d

Z

λ λ   + = ⋅ +      

= ⋅ =

where Y0=1 /Z0 is the characteristic admittance  of the transmission
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line.
The graphical step-by-step procedure is:

1. Identify the load reflection coefficient ΓR and the
normalized load impedance ZR on the Smith chart.

2. Draw the circle of constant reflection coefficient
amplitude  |Γ(d)| =|ΓR|.

3. The normalized admittance is located at a point on the
circle of constant |Γ| which is diametrically opposite to the
normalized impedance.

Example :  Given

025 100       with    50RZ j Z= + Ω = Ω

find YR .
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z(d) = 0.5 + j 2.0
Z(d) = 25 + j100 [ Ω ]

y(d) = 0.11765 – j 0.4706
Y(d) = 0.002353 – j 0.009412 [ S ]
z(d+λ/4) = 0.11765 – j 0.4706
Z(d+λ/4) = 5.8824 – j 23.5294 [ Ω ]

Circle with constant | Γ |

θ = 180°
   = 2β⋅λ/4
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The Smith chart can be used for line admittances, by shifting the
space reference to the admittance location .  After that, one can
move on the chart just reading the numerical values as
representing admittances.

Let’s review the impedance -admittance  terminology:

Impedance   =   Resistance + j Reactance

       Z R jX= +

Admittance  =   Conductance + j Susceptance

              Y G jB= +
On the  impedance  chart, the correct reflection coefficient is always
represented by the vector corresponding to the  normalized
impedance .  Charts specifically prepared for admittances  are
modified to give the correct reflection coefficient in correspondence
of admittance.
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Smith Chart for
Admittances

00.20.55

-0.2

0.2

2 1

0 5

-0 5

3

-3

-2

2

-1

1

Positive
(capacitive)

susceptance

Negative
(inductive)

susceptanceΓ

y(d) = 0.11765 – j 0.4706

z(d) = 0.5 + 2.0
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Since related impedance  and admittance  are on opposite sides of
the same Smith chart, the imaginary parts always have different
sign.

Therefore, a positive (inductive) reactance  corresponds to a
negative (inductive) susceptance , while a negative (capacitive)
reactance  corresponds to a positive (capacitive) susceptance .

Numerically, we have

( )( ) 2 2

2 2 2 2

1
z r j x y g j b

r j x

r j x r jx
y

r j x r j x r x
r x

g b
r x r x

= + = + =
+

− −= =
+ − +

⇒ = = −
+ +
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Impedance Matching 
 
A number of techniques can be used to eliminate reflections when 
line characteristic impedance and load impedance are mismatched. 
Impedance matching techniques can be designed to be effective for 
a specific frequency  of operation ( narrow band techniques) or for a 
given frequency spectrum  (broadband techniques ).   
 
One method of impedance matching involves the insertion of an 
impedance transformer between line and load 

 
 
 
 
 
 
 
 
 

In the following, we neglect  effects of loss in the lines. 

 
 

Impedance 
Transformer  Z0 

 

ZR 
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A simple narrow band impedance transformer  consists of a 
transmission line section of length � /4 
 
 
 
 
 
 
 
 
 
 
 
 
 
The impedance transformer  is positioned so that it is connected to 
a real  impedance ZA.  This is always possible if a location of 
maximum or minimum  voltage standing wave pattern  is selected. 
 

ZA 

dmax  or  dmin 

ZR 

�/4 

Z01 Z02 Z01 

ZB 
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Consider a general load impedance with its corresponding load 
reflection coefficient 
 

� �01

01
; expR

R R R R R
R

Z Z
Z R jX j

Z Z
�

� � � � � � �
�

 

 
If the transformer is inserted at a location of voltage maximum  dmax 
 

� �

� �
01 01

1 d 1
1 d 1

R
A

R
Z Z Z

� � � �
� �

� � � �
 

 
If it is inserted instead at a location of voltage minimum  dmin 
 

� �

� �
01 01

1 d 1
1 d 1

R
A

R
Z Z Z

� � � �
� �

� � � �
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 Consider now the input impedance of a line of length � /4 
  
 
 
 
 
 
 
 
 
Since: 

� �

� �
01 01

1 d 1
1 d 1

R
A

R
Z Z Z

� � � �
� �

� � � �
 

we have 

� �

2
0 0

0
tan L 0

tan( L)
lim

tan( L)
A

in
A A

Z jZ Z
Z Z

jZ Z Z� �	

� �
� �

� �
 

 

Z0 

Zin 
ZA 

L = �/4 



Transmission Lines 

©Amanogawa, 2000 – Digital Maestro Series 168 

Note that if the load is real , the voltage standing wave pattern at the 
load is maximum  when ZR > Z01  or minimum  when ZR < Z01 .  The 
transformer can be connected directly at the load  location or at a 
distance from the load corresponding to a multiple of �/4 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

d1 

ZA=Real 

n �/4 ;  n=0,1,2… 

ZR=Real  

�/4 

Z01 Z02 Z01 

ZB 
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If the load impedance  is real  and the transformer is inserted at a 
distance from the load equal to an even multiple of �/4 then 
 
 

1; d 2
4 2A RZ Z n n
� �

� � �  

 
 
but if the distance from the load is an odd multiple of  �/4 
 
 

2
01

1; d (2 1)
4 2 4A

R

Z
Z n n

Z
� � �

� � � � �  
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The input impedance  of the impedance transformer after inclusion 
in the circuit is given by 
 

2
02

B
A

Z
Z

Z
�  

 
For impedance matching  we need 
 

2
02

01 02 01 A
A

Z
Z Z Z Z

Z
� 
 �  

 
The characteristic impedance of the transformer is simply the 
geometric average  between the characteristic impedance of the 
original line and the load seen by the transformer.  
 
Let’s now review some simple examples. 
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�� Real Load Impedance 
 
 
 
 
 
 
 
 
 
 
 
 
 

2
02

01 02 01 50 100 70.71B R
R

Z
Z Z Z Z R

R
� � 
 � � � �  

 

ZA 

�/4 

RR = 100  Z01 = 50  Z02 = ? 

ZB 
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Note that an identical result is obtained by switching Z01 and RR 
 
 
 
 
 
 
 
 
 
 
 
 

2
02

01 02 01 100 50 70.71B R
R

Z
Z Z Z Z R

R
� � 
 � � � �  

 
 

ZA 

�/4 

RR = 50  Z01 = 100  Z02 = ? 

ZB 
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Another real load case 
 
 
 
 
 
 
 
 
 
 
 
 
 

2
02

01 02 01 75 300 150B R
R

Z
Z Z Z Z R

R
� � 
 � � � �   

 
 
 

ZA 

�/4 

RR = 300  Z01 = 75  Z02 = ? 

ZB 
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Same impedances as before, but now the transformer is inserted at 
a distance �/4 from the load (voltage minimum in this case) 
 
 
 
 
 
 
 
 
 
 

2 2
01 75

18.75
300A

R

Z
Z

R
� � �   

 
2
02

01 02 01 75 18.75 37.5B A
A

Z
Z Z Z Z Z

Z
� � 
 � � � �    

�/4   

 

ZA 

RR = 300  

�/4 

Z01 = 75  Z02 Z01 

ZB 
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�� Complex Load Impedance – Transformer at voltage maximum  
 
 
 
 
 
 
 
 
 
 

0

100 100 50
0.62

100 100 50

1
213.28

1

R

R
A

R

j
j

Z Z

� �
� � �

� �

� �
� � 

� �

 

02 01 50 213.28 103.27AZ Z Z� � � �   

   dmax 

 

ZA 

ZR =  100 + j 100 

�/4 

Z01 = 50  Z02 Z01 

ZB 
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�� Complex Load Impedance – Transformer at voltage minimum 
 
 
 
 
 
 
 
 
 
 

0

100 100 50
0.62

100 100 50

1
11.72

1

R

R
A

R

j
j

Z Z

� �
� � �

� �

� �
� � 

� �

 

02 01 50 11.72 24.21AZ Z Z� � � �    

   dmin  

 

ZA 

ZR =  100 + j 100 

�/4 

Z01 = 50  Z02 Z01 

ZB 
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If it is not important to realize the impedance transformer with a 
quarter wavelength line, we can try to select a transmission line  
with appropriate  length  and characteristic impedance , such that the 
input impedance is the required real value  
 
 
 
 
 
 
 
 
 
 
 
 

� �
02

01 02
02

tan( L)
tan( L)

R R
A

R R

R jX jZ
Z Z Z

Z j R jX
� � �

� �
� � �

 

 

ZR = RR + jXR 

L 

Z01 Z02 

ZA 
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After separation  of real and imaginary  parts we obtain the equations  

� �

� �

02 01 01

02
2

01 02

( ) tan L

tan L

R R

R

R

Z Z R Z X

Z X

Z R Z

� � �

� �
�

 

with final solution  

� �
� �� �

2 2
01

02
01

2 2
01 01

1 /

1 /
tan L

R R R

R

R R R R

R

Z R R X
Z

R Z

R Z Z R R X

X

� �
�

�

� � �
� �

 

The transformer can be realized as long as the result for Z02 is real. 
Note that this is also a narrow band  approach. 
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� Single stub impedance matching

Impedance matching can be achieved by inserting another
transmission line ( stub ) as shown in the diagram below

ZA = Z0

dstub

ZRZ0

Lstub

Z0S
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There are two design parameters for single stub matching:

� The location of the stub with reference to the load dstub

� The length of the stub line Lstub

Any load impedance can be matched to the line by using single
stub technique.  The drawback of this approach is that if the load is
changed, the location of insertion may have to be moved.

The transmission line realizing the stub is normally terminated  by a
short or by an open circuit .  In many cases it is also convenient to
select the same characteristic impedance used for the main line,
although this is not necessary. The choice of open or shorted stub
may depend in practice on a number of factors.  A short  circuited
stub is less  prone to leakage  of electromagnetic radiation and is
somewhat easier to realize.  On the other hand, an open  circuited
stub may be more practical  for certain types of transmission lines,
for example microstrips where one would have to drill the insulating
substrate to short circuit the two conductors of the line.
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Since the circuit is based on insertion of a parallel stub, it is more
convenient to work with admittances , rather than impedances.

YA = Y0

dstub

YR = 1/ZRY0 = 1/Z0

Lstub

Y0S
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For proper impedance match:

( )stub stub 0
0

1
dAY Y Y Y

Z
= + = =

dstub

YR = 1/ZR

Y (dstub)

Lstub

Y0S

Ystub

+

Input admittance
of the stub line

Line admittance at location
dstub before the stub is applied
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In order to complete the design, we have to find an appropriate
location  for the stub.  Note that the input admittance  of a stub  is
always imaginary  (inductance if negative, or capacitance if positive)

stub stubY jB=
A stub should be placed at a location where the line admittance has
real part equal to Y0

( ) ( )stub 0 stubd dY Y jB= +

For matching, we need to have

( )stub stubdB B= −

Depending on the length of the transmission line, there may be a
number of possible locations where a stub can be inserted for
impedance matching.  It is very convenient to analyze the possible
solutions on a Smith chart.
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The red arrow  on the example indicates the load admittance .  This
provides on the “admittance chart” the physical reference for the
load location on the transmission line.  Notice that in this case the
load admittance falls outside the unitary conductance circle. If one
moves from load to generator  on the line, the corresponding chart
location moves from the reference point, in clockwise  motion,
according to an angle θθ (indicated by the light green arc)

4
2 d d

πθ = β =
λ

The value of the admittance  rides on the red circle  which
corresponds to constant magnitude of the line reflection coefficient,

|Γ(d)|=|ΓR |, imposed by the load.

Every circle of constant |Γ(d)| intersects the circle Re { y } = 1
(unitary normalized conductance ), in correspondence of two points.
Within the first revolution , the two intersections provide the
locations closest to the load for possible stub insertion.
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The first solution  corresponds to an admittance  value with positive
imaginary part, in the upper portion  of the chart

( ) ( )
( ) ( )

( )

1

1

1

stub 0 stub1

stub stub1 1

1
stub

stub

d d

                         d 1 d

d
4

d

Y Y j B

y j b

j B

= +

= +

θ= λ
π

−

Line Admittance - Actual :

Normalized :        

Stub Location :

Stub Admittance - Actual :      

                       Norma ( )

( )
( )( )

1

1

1

stub

1
stub

0 stub

1
stub 0 stub

d

1
tan ( )

2 d

tan d ( )
2

s

s

j b

L
Z B

L Z B

−

−

−

 λ  =
 π  

λ=
π

lized :           

Stub Length : short

open
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The second solution  corresponds to an admittance  value with
negative  imaginary part, in the lower portion  of the chart

( ) ( )
( ) ( )

( )

2

2

2

stub 0 stub2

stub stub2 2

2
stub

stub

d d

                         d 1 d

d
4

d

Y Y j B

y j b

j B

= −

= −

θ= λ
π

Line Admittance - Actual :

Normalized :        

Stub Location :

Stub Admittance - Actual :      

                        Norma ( )

( )
( )( )

2

2

2

stub

1
stub

0 stub

1
stub 0 stub

d

1
tan ( )

2 d

tan d ( )
2

s

s

j b

L
Z B

L Z B

−

−

 λ  = −
 π  

λ= −
π

lized :         

Stub Length : short

open
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If the normalized load  admittance falls inside the unitary
conductance circle (see next figure), the first  possible stub location
corresponds to a line admittance with negative  imaginary part. The
second  possible location has line admittance with positive
imaginary part.  In this case, the formulae given above for first and
second solution exchange place.

If one moves further away from the load, other suitable locations for
stub insertion are found by moving toward the generator, at
distances multiple of half a wavelength from the original solutions.
These locations correspond to the same points on the Smith chart.

1

2

stub

stub

d
2

d
2

n

n=

λ= +

λ+

First set of locations

Second set of locations  
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Single stub matching problems can be solved on the Smith chart
graphically, using a compass and a ruler. This is a step-by-step
summary of the procedure:

(a) Find the normalized load impedance and determine the
corresponding location on the chart.

(b) Draw the circle of constant magnitude of the reflection
coefficient | Γ| for the given load.

(c) Determine the normalized load admittance on the chart.  This is
obtained by rotating 180 ° on the constant | Γ| circle, from the
load impedance point. From now on, all values read on the chart
are normalized admittances.
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yR

(c) Find the normalized load
admittance knowing that

yR = z(d=λ /4 )
From now on the chart
represents admittances.

(a) Obtain the normalized load

impedance zR=ZR /Z0 and find
its location on the Smith chart

(b) Draw the
constant  |Γ(d)|
circle180° = λ /4
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(d) Move from load admittance toward generator by riding on the
constant | Γ| circle, until the intersections with the unitary
normalized conductance circle are found. These intersections
correspond to possible locations for stub insertion. Commercial
Smith charts provide graduations to determine the angles of
rotation as well as the distances from the load in units of
wavelength.

(e) Read the line normalized admittance in correspondence of the
stub insertion locations determined in (d).  These values will
always be of the form

( )
( )

stub

stub

d 1        top half of chart

d 1        bottom half of chart

y jb

y jb

= +

= −
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First location suitable for
stub insertion

dstub1=(θ1/4π)λ

θ1

(d) Move from load toward
generator and stop at a
location where the real
part of the normalized line
admittance is 1.

Unitary
conductance
circle

(e) Read here the
value of the
normalized line
admittance
y(dstub1) = 1+jb

First Solution



Transmission Lines

© Amanogawa, 2000 – Digital Maestro Series 194

1

-1

0 0.2 0.5 5

0.2

-0.2

21

-0 5

0 5

-3

3

2

-2

zR

yR

Load
location

Second location suitable
for stub insertion

dstub2=(θ2/4π)λ

(e) Read here the
value of the
normalized line
admittance
y(dstub2) = 1 - jb

Unitary
conductance
circle

θ2

(d) Move from load
toward generator and
stop at a location
where the real part of
the normalized line
admittance is 1.

Second Solution
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(f) Select the input normalized admittance of the stubs, by taking
the opposite of the corresponding imaginary part of the line
admittance

( )
( )

stub stub

stub stub

line:  d 1      stub:  

line:  d 1      stub:  

y jb y jb

y jb y jb

= + → = −

= − → = +
(g) Use the chart to determine the length of the stub.  The

imaginary normalized admittance values are found on the circle
of zero conductance on the chart .  On a commercial Smith chart
one can use a printed scale to read the stub length in terms of
wavelength. We assume here that the stub line has
characteristic impedance Z0 as the main line. If the stub has

characteristic impedance Z0S  ≠ Z0 the values on the Smith chart
must be renormalized as

0 0

0 0

' s

s

Y Z
jb jb jb

Y Z
± = ± = ±
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(f)  Normalized input
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short circuited stub with normalized
input admittance  - jb
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ystub = 0 - jb
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First Solution

After the stub is inserted,
the admittance at the stub
location is moved to the
center of the Smith chart,
which corresponds to
normalized admittance 1
and reflection coefficient 0
(exact matching condition).

If you imagine to add
gradually the negative
imaginary admittance of
the inserted stub, the total
admittance would follow
the yellow arrow, reaching
the match point when the
complete stub admittance
is added.

matching
condition
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First Solution If the stub does not have
the proper normalized input
admittance, the matching
condition is not reached

Effect of a stub with
positive susceptance

Effect of a stub with
negative susceptance of
insufficient magnitude

Effect of a stub with
negative susceptance of
excessive magnitude
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�� Double stub impedance matching  
 
Impedance matching can be achieved by inserting two stubs  at 
specified locations  along transmission line as shown below 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

YA = Y01 
dstub1

YR = 1/ZR Y01 = 1/Z01

Lstub1 

Y0S1 

Lstub2 

Y0S2 

dstub2 
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There are two design parameters for double stub matching: 
 
�� The length of the first stub line Lstub1 

�� The length of the second stub line Lstub2 
 
 
In the double stub configuration, the stubs are inserted at pre-
determined locations .  In this way, if the load impedance is 
changed, one simply has to replace the stubs with another set of 
different length. 
 
The drawback  of double stub tuning is that a certain range  of load  
admittances  cannot be matched  once the stub locations are fixed.   
 
Three stubs are necessary to guarantee that match is always 
possible.  
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The length of the first stub is selected so that the admittance at the 
location of the second stub ( before the second stub is inserted ) has 
real part equal to the characteristic admittance of the line 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Y’A = Y01 + jB  
dstub1

YR = 1/ZR Y01 = 1/Z01 

Lstub1 

Y0S1 

dstub2 
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The length of the second stub  is 
selected to eliminate  the imaginary 
part of the admittance at the location 
of insertion. 

 

YA = Y01 + jB – jB = Y01  
dstub1

YR = 1/ZR 

Lstub1 

Y0S1 

dstub2 

Lstub2 

Y0S2 

Y01 = 1/Z01 

Ystub = -jB 
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The normalized admittance 
that we want at location  

dstub2  is on this circle  

At the location where
the second stub  is
inserted, the  possible
normalized admittances
that can give matching
are  found on the circle
of unitary conductance
on the Smith chart. 
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YA = Y01  

Lstub2 

Y0S2 

Y01 = 1/Z01 

YR 

dstub 

Think of stub matching in a unified way. 

Single stub  

YR 

Lstub1 

Y0S1 

Double stub 

The two approaches solve the same problem 

dstub2 



Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 208 

 
 
If one moves from the location of the second stub back to the load, 
the circle of the allowed normalized admittances is mapped  into 
another circle, obtained by pivoting the original circle about the 
center of the chart. 
 
At the location of the first stub, the allowed normalized admittances 
are found on an auxiliary circle which is obtained by rotating the 
unitary conductance circle counterclockwise, by an angle 
 
 

� �aux stub2 stub1 21
4 4

d d d
� �

� � � �
� �
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The normalized admittance 
that we want at location   dstub1 
is on this auxiliary circle . 

Pivot here 

This angle of rotation
corresponds to a distance

d12 = dstub2 -dstub1 
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This is the auxiliary circle for
distance between the stubs
d21 = �/8 + n �/2. 
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This is the auxiliary circle for 
distance between the stubs 
d21 = �/4 + n �/2. 
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This is the auxiliary circle for
distance between the stubs
d21 = 3 �/8 + n �/2. 
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This is the auxiliary circle for
distance between the stubs
d21 = n �/2.   

NOTE: this is not a good
choice for double stub design!  
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Given the load impedance, we need to follow these steps to 
complete the double stub design: 

(a) Find the normalized load impedance and determine the 
corresponding location on the chart. 

(b) Draw the circle of constant magnitude of the reflection 
coefficient | �| for the given load. 

(c) Determine the normalized load admittance on the chart.  This is 
obtained by rotating -180 � on the constant | �| circle, from the 
load impedance point. From now on, all values read on the chart 
are normalized admittances. 

(d) Find the normalized admittance at location dstub1 by moving 
clockwise on the constant | �| circle. 
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(e) Draw the auxiliary circle 

(f) Add the first stub admittance so that the normalized admittance 
point on the Smith chart reaches the auxiliary circle (two 
possible solutions).  The admittance point will move on the 
corresponding conductance circle, since the stub does not alter 
the real part of the admittance  

(g) Map the normalized admittance obtained on the auxiliary circle 
to the location of the second stub dstub2.  The point must be on 
the unitary conductance circle 

(h) Add the second stub admittance so that the total parallel 
admittance equals the characteristic admittance of the line to 
achieve exact matching condition  
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(c) Find the normalized load 
admittance knowing that  

yR = z(d=� /4 ) 
From now on the chart 
represents admittances. 

(a) Obtain the normalized load

impedance zR=ZR /Z0 and find
its location on the Smith chart 

(b) Draw the 
constant  |�(d)| 
circle 180� = � /4 

(d) Move to the 
first stub location 



Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 217 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

1 

-1 

0 0.2 0.5 5

0.2 

-0.2 

2 1

-0 5

0 5

-3 

3

2

-2 

yR 

(e) Draw the auxiliary circle 

(f) Second solution: Add 
admittance of first stub to 
reach auxiliary circle 

(f) First solution: Add 
admittance of first stub to 
reach auxiliary circle
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(g) First solution: Map the normalized admittance 
from the auxiliary circle to the location of the 

second stub  dstub2. 

First solution: Admittance at

location dstub2 before insertion
of second stub  

(h) Add second 
stub admittance  
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(g) Second solution: Map the normalized 
admittance from the auxiliary circle to the location 

of the second stub  dstub2. 

Second solution: Admittance at 

location dstub2 before insertion 
of seco nd stub  

(h) Add second 
stub admittance 
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As mentioned earlier, a double stub  configuration with fixed stub 
location may not  be able to match  a certain range of load 
impedances. 
 
This is easily seen on the Smith chart.  If the normalized admittance 
of the line, at the first stub location , falls inside a certain forbidden 
conductance circle tangent  to the auxiliary circle (and always 
contained inside the unitary conductance circle), it is not possible 
to find a value for the first stub that can bring the normalized 
admittance to the auxiliary circle.  Therefore, it is impossible to 
position the normalized admittance of the second stub location on 
the unitary conductance circle.   
 
When this condition occurs, the location of one of the stubs must 
be changed  appropriately.  Alternatively, a third stub  could be 
added. 
 
 Examples of forbidden regions  follow. 
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This is the auxiliary circle for
distance between the stubs
d21 = �/8 + n �/2. 

 

The normalized conductance circle
for the normalized admittance does
not intersect the auxiliary circle. 

Forbidden conductance 
circle.  If the admittance 
at the first stub location 
falls inside this circle, 
match is not possible 
with the given two stub 
confi guration.  
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This is the auxiliary circle for 
distance between the stubs 
d21 = �/4 + n �/2. 
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This is the auxiliary circle for
distance between the stubs
d21 = 3 �/8 + n �/2. 
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